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Abstract: Automated scheduling will play an increasing role in future ground- and space-based

observatory operations. Due to the complexity of the problem, artificial intelligence technology

currently offers the greatest potential for the development of scheduling tools with sufficient

power and flexibility to handle realistic scheduling situations. This paper summarizes the main

features of the observatory scheduling problem, how AI techniques can be applied, and recent

progress on AI scheduling for Hubble Space Telescope.

1. Introduction

The purpose of automating observatory scheduling is to increase the effective utilization and,

ultimately, scientific return from one or more telescopes. The development of increasingly

sophisticated satellite observatories, as well as the planned high level of automation of ground-

based telescopes, has led to a demand for flexible scheduling so that astronomers can optimally

exploit the capabilities that these facilities have to offer.

The fundamental requirements of optimal telescope scheduling are similar in many ways to those

of other scheduling problems, e.g. those encountered in commercial and industrial domains.

These problems have been found to be notoriously difficult to solve in practical settings. In this

paper we discuss the source of some of these difficulties and how the use of advanced software

technology ("artificial intelligence", or AI) can be applied to help overcome them. We describe

the progress made at Space Tele-Jcope Science Institute (STScl) in developing AI scheduling _.

tools for tlubble Space Telescope (HST), and conclude with a discussion of the prospects for 1 '
integrating automated scheduling into the overall context of observatory operations.
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2. Formulation of the Problem

The scheduling problem we are concerned with may be briefly stated as follows:

Given a collection (pool) of programs, each consisting of a collection of desired obser-

vations, schedule the execution of these observations over some specified time period

: so that no strict constraints are vio!ated and that preferences on when observations

are scheduled, or on the conditions obtaining at these times, are satisfied to the

greatest extent possible.

Hidden in this formulation is a wealth cf complexity. Strict constraints refer to conditions that

must not be violated under any circumstances. They determine the feasibility of a _hedule.

They can range from the obvious "don't observe targets too close to the sun" to more subtle

statements such as "don't schedule simultaneous instrument changes on different telescopes

which would overload the available operations staff." Preference constraints, or simply prefer-

ences, refer to conditions which are more desirable than others to hold in the final schedule.

{ Examples of this type of constraint include scheduling observations as close to the zenith as
possible, or scheduling a followup observation a_ soon as possible after its predecessor. Both

' strict and preference constraints can be expressed in terms of absolute time or relative to other

observations, either past, already scheduled for the future, or part of the same scheduling pool.

They can also refer to resource consumption or loading limitations.

In addition to the variety of constraints that may be relevant, other factors can complicate

scheduling. Some observations may be conditional upon others or upon external factors: they
:i

may or may not be executed depending on whether the necessary conditions are met. Observa-

tions may be defined at differing priority levels which can change as the schedule evolves (e.g.

• it may be a high priority goal to obtain the first 80% of a statistical sample, but lower priority

to obtain the last 20%.) There can also be shifts in emphasis for science reasons: targets of

opportunity can disrupt the most carefully arranged schedule. Some of the most important

complications are due to intrinsic uncertainty and therefore unpredictability. On the ground

the weather is the most obvious such factor, but there are often many others.

3. Classical Approaches to Scheduling

: Computer techniques for optimal scheduling have been investigated for many years for a number

of applicatio,_s (see, e.g., [1] for a comprehensive review and bibliography). Much of this classical
work has focused on versions of the idealized "job-shop" scheduling problem, i.e. the problem of ;

_,- scheduling n tasks on m machines. This problem and related ones are NP-complete, meaning "-.-

, essentially that there are no efficient algorithms for finding optimal solutions (see, e.g., [2]).

The basic problem with these classical results is that they require key features of the problem

to be abstracted away, so that even an "exact" solution to the abstracted problem would be J

of little relevance to the original "real" problem. •Approximate solutions to the abstracted ',

problem suffer from the same limitat, ions. For example, there exist good approximate methods

for finding near-optimal solutions to the well-known "travelling salesman" problem, to which

the telescope scheduling problem is isomorphic if minimizing target-to-target slew time is the

sole scheduling criterion. But this is rarely the case: other constraints enter into the problem in

an essential way; these generally cannot be formulated within the framework of the abstracted

problem, r
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It is clear that classical approaches can be useful for problems which are sufficiently simple: in

practice this often means that schedule optimization is driven by a single overriding criterion.

For the probler, af scheduling complex modern observatories, however, this is not the case:

retire powerful techniques are required.

4. Artificial Intelligence and Scheduling

In recent years a variety of new software me: hodologies have been developed under the gen-

eral term of "artificial intelligence" (AI). This refers to a collection of software development

techniques and tools that have evolved in the course of computer science research as effective

ways to represent and solve certain kinds of prtsblems. These techniques have moved from the

laboratory into widespread use in applications as their effectiveness has been demonstrated.

For the purposes of automated scheduling, the most important of these are:

• a language (Lisp) that is particularly appropriate for manipulating complex data structures
and symbolic data

• object oriented programming with inheritance and message passing; this facilitates the

incremental development of complex problem representations

• new ',vays to represent and manipulate knowledge of various types, e.g. frames, associative

networks, rules, demons, etc.

• methods for reasoning when facts and/or inferences are uncertain

• improved algorithms and heuristics for ',earching large and complex problem spaces

• integrated graphics and windows technology for facilitating user interaction

Several artificial intelligence research efforts have considered scheduling as a domain where AI

techniques can be fruitfully applied. Of particular interest is tile factory scheduling work of

:: Fox Smith, and co-workers (e.g. [3,41) who have developed a rich constraint representation and

versatile reasoning process for attacking realistic factory scheduling problems. While factory

scheduling shares a number of common features with telescope scheduling (most notably a sim-

ilar set of precedence and efficiency constraints), there are some important differences. Certain

important factory scheduling constraints (e.g. minimizing work-in-progress or inventory) are

not relevant for telescope scheduling, while the latter has a significant number of highly pre-

dictable constraints (e.g. those based on the motions of celestial objects) that can be exploited
to limit the search for alternative schedules.

At Space Telescope Science Institute we initiated a project (SPIKE) in early 1987 for the purpose

of developing AI scheduling tools [5,6,71for Hubble Space Telescope (HST). HST scheduling is

an extremely demanding task, requiring the scheduling of some tens of thousands of observations

per year subject to a large number of proposer-specified and operational constraints [8]. Our

overall approach to HST scheduling was inspired by the work of Smith and co-workers on the

" factory scheduling l_roblem but has drawn on a number of other lines of research as well' as ,

part of the SPIKE project we have developed a new framework for representil,g and reasoning

with scheduling constraints [9] (based on discrete uncertainty reasoning for rule-based expert

systems) and new techniques for searching the space of possible schedules [10] (baaed on recent _

developments in artificial neural networks).
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In the following section we highlight some aspects of telescope scheduling that contribute most

significantly to its complexity. This is followed by a discussion of how AI techniques and

methods can be effectively applied to the problem.

5. Why is Scheduling a Hard Problem?

There are four notable features of the telescope scheduling problem that make it difficult:

interacting constraints, uncertainty, optimization criteria, and search.

Interacting Constraints

As discussed above in Section 2, realistic scheduling problems will typically involve a large

number of different types of constraints, both strict and preference. The first problem to

overcome is that of representation, i.e. accurately describing the r_levant constraints so that

they can be interpreted by the scheduling software. A suitable representation must include

not only binary (yes/no) decision criteria but must also express varying degrees of preference.

The second issue is that of trade-offs, i.e. the knowledge of how to judge among competing or

conflicting constraints. This is necessary because constraints must be considered simultaneously,

not individually. The third issue can be termed constraint reasoning: this refers to the process

of deducing, at any stage of the scheduling process, the implications of constraints and prior

scheduling decisions in order to determine permitted and excluded scheduling times. This must

also include possible inferences about the degree of preference of the permitted times.

It is evident that the point of constraint representation and trade-off is to capture the knowledge

that human schedulers would use when faced with constructing a schedule by hand. Constraint

reasoning deals with how to manipulate this knowledge dynamically as the schedule evolves in

order to provide a useful view into the available scheduling choices.

Uncertainty

Because we cannot predict the future with certainty there are occasions when we cannot be

sure that required preconditions for an activity wi!] be satisfied at any given time. This un-

predictability can influence scheduling in variety of ways. Unpredictable constraints can ex-

hibit completely chaotic behavior (e.g. unexpected hardware breakdown) or can more-or-less

smoothly diverge from some predicted state (e.g. a satellite position prediction). This behavior
can be characterized by a coherence time, i.e. the timescale over which typical "significant"

changes in the constraint are expected. The severity of significant changes can be qualitatively

characterized by degree of impact, i.e. the extent to which the schedule is sensitive to changes

(taking into account the trade-offs of the unpredictable constraint with any others that may

be relevant). Clearly the most difficult cases to handle are short-coherence-time high-impact

constraints: they may well be ignored altogether in advance scheduling and simply invoke a

reaction when they occur. Constraints with coherence times that are a significant fraction of

the scheduling horizon must often be incorporated explicitly.

Optimization Criteria

Since the primary purpose of automating telescope scheduling is to optimize telescope utiliza-

tion, it is clearly important that a scheduling system adequately represent what is meant by

"optimal". This is less straightforward than it might seem at first: scheduling goals vary de-

pending on the circumstances, so that a schedule which is optimal in some sense carl be far from
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optimal in another. For example, at different times the most important optimization criterion
could be some combination of overall telescope throughput, picking up a disrupted schedule,
diagnosing an instr,ment problem, and scheduling a best match to changing environmental
conditions. It is thus important that a scheduling system be flexible in terms of the high-level
criteria by which schedule optimality is j'adged, and that multiple criteria be utilized depending
on the circumstances.

,; Search

' The process of scheduling can naturally be viewed as search, where at each step some decision

must be made about (a) which activities to consider and (b) how to restrict their allowed
scheduling times. Because of the large numb- r of possible choices for (a) and (b) at each step,
the effort required to search the space of possible schedules is typically exponential in the size
of the problem. This "combinatorial explosion" is the problem most directly addressed by

classical approaches to scheduling (in contrast to interacting constraints and uncert inty which
are usually idealized away).

Effective search requires the early identification of both "good" decision paths as well as the
early pruning of "deadend" paths, i.e. partial schedules must be judged by their potential for
being completed beneficially as well as by their current state. This is complicated by the fact
that scheduling conflicts may not be detected until many steps into the search, at which point
a large amount of effort may have already been expended. It. is desirable in this case to identify
a minimal number of past decisions to "undo" to resolve the conflict and thus repair tke partial
schedule, instead of simply backing up and throwing the partial schedule away.

Another aspect of the search problem is that there may be no solution because the problem
is overconstrained. Sluice it is generally infeasible to enumerate all possible deadends to prove
that this is the case, there is a need to identify and diagnose overconstrained problems without

becoming bogged down in a fruitless search.

6. AI Strategies for Optimal Scheduling

In this section we survey some of the AI techniques that can help deal with the problems de- i

scribed in Section 5. Many of these techniques have been implemented in the SPIKE scheduling
tools; some are planned for future development.

Separate constraint reasoning from strategic search

This is a statement about the overall architecture of the scheduler. The intent is to separate

those aspects of the system that reason about constraints from those that reasc:, ,_bout (partial
or complete) schedules. The reason for this separation is that these reasoning processes take
place on very different levels. Constraint reasoning is low-level and determines feasible aud
preferred scheduling times among which choices c_n be made; strategic reasoning evaluates
one or more schedules and actually makes the choices. There may be more than one source

• of strategic knowledge available to work on one scheduling problem: all would, however, make ,
common use of the results of constraint reasoning.

Use uncertainty reasoning methods for reasoning about constraints _ ,

There has accumulated a large body of theoretical and practical results on reasoning with _ '_
uncertainty in the context of discrete rule-based expert systems (e.g. Mycin [111and Prospector _
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[12}). Based on this work we have developed a continuum version of uncertainty reasoning

that can efficiently represent a wide variety of scheduling constraints [9]. Our framework is

: well-suited to the weighing of evidence for and against different scheduling hypotheses, thus
providing essential inpnt_ tn trade-off decisions.

We associate with each activity (or group of activities) to be scheduled a suitability function, a

function of time whose value represents how desirable it is to start an activity at that time (or

.i possibly that it is forbidden to start at that time, i.e. would violate a strict constraint). Suit-

ability functions are derived from constraints, an arbitrary number of which may be associated

with each activity depending on the type of activity and any specific factors that can affect

when it is scheduled. The suitability function of an activity is the product of the suitability

functions derived from its constraints. This not only mirrors an intuitive notion of how to

combine different sources of evidence for and against scheduling an activity at a given time, it

can also be shown to be logicaily required by the plausible assumptions that combination of

evidence should be associative and monotonic [9].

The suitability function framework provides several important capabilities:

• a uniform way to capture human value judgements that enter into the definition of strict

and preference constraints and into the trade-offs among conflicting constraints

• a straightforward mechanism for the propagation of constraints, i.e. the deduction of

consequences of constraints and strategic scheduling decisions

• the explicit representation of some classes of intrinsically unpredictable constraints, in
terms of maximizing the probability that desirable conditions will be met

• a mechanism to track the probable and/or certain consumption or loading of critical
resources

Provide multiple control mechanisms for strategic schedulling and search

Based on the constraint-reasoning layer it is possible to implement a variety of strategic search

mechanisms, any of which may be invoked depending on the nature and state of the problem.

To date we have implemented three such mechanisms in the SPIKE scheduling tools:

• procedural search: this includes standard search techniques such as best-first or most-

: constrained-first algorithms. These tend to be computationally expensive and often en-

counter deadends which result in grossly sub-optimal schedules.

• rule-based heuristic search: this mechanism includes aearch rules to examine the state of

a collection of partial schedules to identify the most "promising", and commitment rules

: to decide how to extend the schedule by making some scheduling decision i7]. The rules

communicate with the constraint-reasoning layer through "frames" or "schema" that hold

summary information about the partial schedules. This general approach is well suited to

the representation of quite complex scheduling heuristics. It also has the advantage that

it can be easily extended to handle new situations as they are encountered.

• neural networks: a very different approach makes use of an "artificial neural network"

[13] to represent a set of discrete scheduling choices. These networks are conceptually

composed of a large number of simple processing elements operating in parallel whose

computational power comes from their massive interconnection. These connections can

2_
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:I be derived directly from the suitability functions of the activities to schedule [10]. The
J

_-i_ advantages of this approach are rapid execution, the ability to easily reschedule, and, on

_f hardware now in the development stage, the possibility for a true parallel implementation.

Other mechanisms could also be implemented (and are currently under investigation at STScl).

. The most important of these are:

,7 * plan repair mechanism: this is a facility to examine an infeasible schedule, analyze it to

"I identify which prior decisions contributed to the conflict, and undo a sufficient number of

• , those decisions to make the schedule feasible again. Various criteria could be employed for

which types of decisions are undoable and which sctivities can be rescheduled This mech-

anism would be useful not only for revising an infeasible schedule, but also for "reactive

rescheduling" when an ongoing schedule is disrupted.

• alternative perspective focus: this mechanism would focus on certain classes of"onstraints

(strict and preference) to help with optimizing scheduling decisions and identifying "bot-

tlenecks" that can be determined from that class alone. For example, potential resource

overloads could be detected early and then avoided by judicious scheduling of activities

which use that resource. Constraints grouped into classes of this type can be regarded as

corresponding to the perspectives of Smith et al. [4].

Formulate and attack the problem hierarchically

A common and important problem-solving strategy is to lormulate and solve a simpler higher-

level problem, then attack the resulting lower-level subproblems by constraining them with the

higher-level solution. In the scheduling domain there are two obvio,¢ wayz to accomplish this:

by scheduling groups of related activities at once, and by limiting the time granularity of the

schedule. For example, it is possible to cluster appropriately related activities into a single

"meta-actirity" which can be scheduled initially as a single entity. It is also possible to limit

the initial decisions or, when to schedule activities to e.g. one-week intervals out of a six-month

schedule. Then, once a satisfactory allocation of activities to weeks has been determined, each

week can be scheduled individually in detail.

This approach has the major advantage that some constraints which are important at the

detailed scheduling level can be treated m an average or statistical sense when activities are

allocated only at a sufficiently coarse-grained level. This will generally further simplify the

calculation and propagation of constraints. The drawback of hierarchical scheduling is that

levels may destructively interact: a deadend in a detailed schedule may require revising the

higher-level schedule, which c,,' t)otentially invalidate other detailed schedules. It is thus im-

portant that the higher-level pc,. ,lem reflect as accurately as possible the constraints that will

be important in detailed scheduling.

Provide explicit user visibility and control

, The approach we have taken in SPIKE is that automated scheduling is fimdamentally a support !

tool fo" the people who are responsible for making scheduling decisions. In this approach one of

the most important characteristics of the scheduler is how it interacts with the user. The user ._,

must have visibility into all aspects of the scheduling problem and the evolving schedule. The " -

user must also have control, i.e. the ability to override any decisions made by the scheduler, and _ 1
the ability to create and evaluate alternative schedule fragments. Because of the large volume "_ !
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of information required to specify even modest-sized realistic scheduling problems, it is almost
essential to utilize graphical display and interaction capabilities. This makes it necessary to

implement scheduling tools of this type on single-user workstations, where high-speed graphics
and dedicated processing power can both I,e exploited.

7. Conclusions

It is clear that software technology and approaches to scheduling have reached a sufficient level
of development that automated telescope scheduling is a realistic goal. The use of artificial
intelligence techniques makes it possible to develop and adapt software, such as the HST SPlKE
scheduling tools, for a variety of telescope scheduling problems (see [14] for a discussion of the

experimental use of SPIKE on ground-based telescope scheduling). The advantages of using
these techniques are primarily a rapid software development cycle, a concise but expressive
representation of scheduling data, flexibility in the definition and modification of scheduling

constraints, powerful facilities for expressing search strategies, and the ability to incorporate a
graphics-oriented user interface to help the user understand and modify the schedu!e.

Observatory scheduling is not an isolated task: for it to be ultimately successful it must be
integrated into the overall operations environment. At the simplest level this integration must
include the ability to inform the scheduler of what must be scheduled and what has been

executed. A fuller integration should include capabilities for [15]:

• automatic access to data on environmental conditions and predictions that can be used

to update scheduling constraints

• user support for proposal preparation, including observation design tools and simulators

• integrated planning capabilities, so that e.g. observations of various types are included in
the scheduling pool along with appropriate calibration observations

• feedback from the schedule as executed, so that deviations and discrepancies can be rec-
ognized and diagnosed as early as possible

While this represents an ambitious program, it is net beyond the reach of current technology
or its modest extrapolation.
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